

eota@tzus.cz

European Technical Assessment

ETA 17/0347 of 31/07/2018

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product G&B Fissagi Gebofix EPO PLUS RE

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

G&B FISSAGGI Manufacturer

> Corso Savona, 22 10029 Villatellone (TO)

ITALY

Manufacturing plant G&B Fissaggi S.R.L., Plant 4

This European Technical Assessment

contains

20 pages including 17 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

This version replaces

EAD 330499-00-0601

ETA 17/0347 issued on 24/04/2017

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The G&B Fissagi Gebofix EPO PLUS RE with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Static and quasi-static loading	
Resistance to steel failure (tension)	See Annex C1, C2, C4, C5
Resistance to combined pull-out and concrete failure	See Annex C1, C2, C4, C5
Resistance to concrete cone failure	See Annex C1, C2, C4, C5
Edge distance to prevent splitting under load	See Annex C1, C2, C4, C5
Robustness	See Annex C1, C2, C4, C5
Maximum setting torque moment	See Annex B2
Minimum edge distance and spacing	See Annex B2
Resistance to steel failure (shear)	See Annex C3, C6
Resistance to pry-out failure	See Annex C3, C6
Resistance to concrete edge failure	See Annex C3, C6
Displacements under short term and long term loading	See Annex C7
Durability of metal parts	See Annex A4
Seismic performance C2	
Resistance to steel failure	See Annex C8
Resistance to pull-out	See Annex C8
Factor for annular gap	See Annex C8
Displacement	See Annex C8

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

5.2 Tasks of the notified bodies

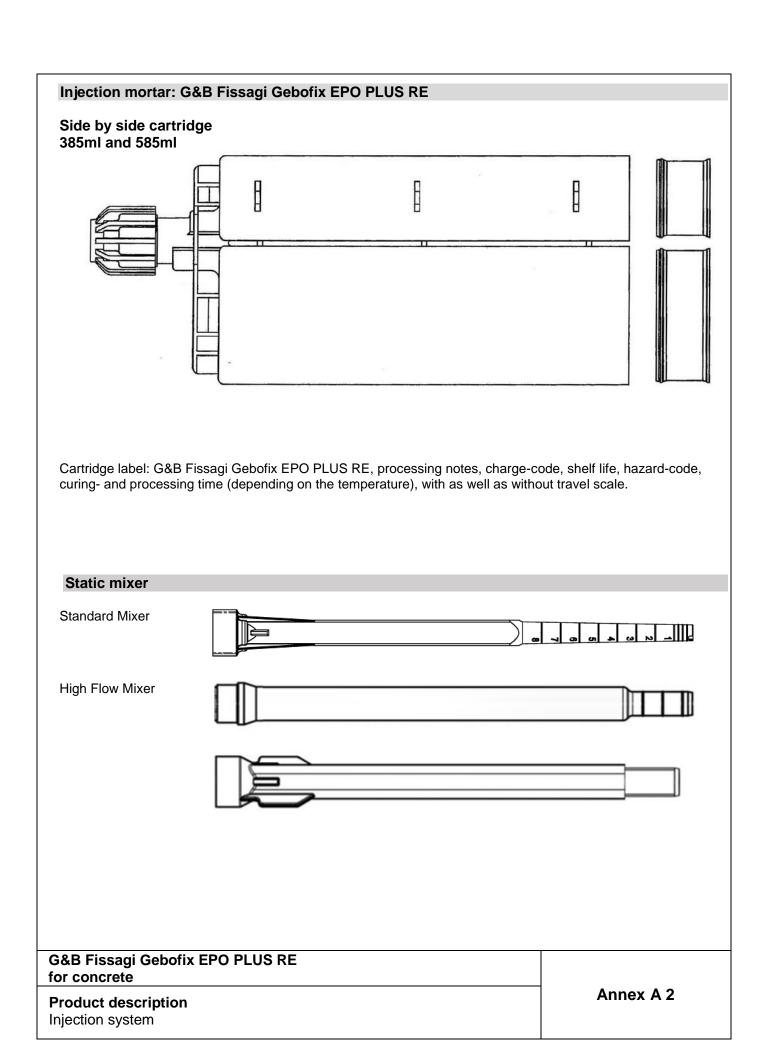
The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

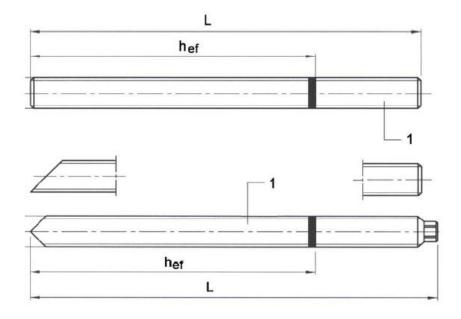
In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.

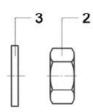
Issued in Prague on 31.07.2018


By

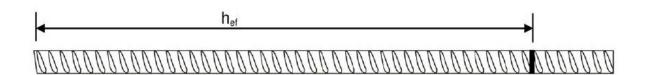

Ing. Mária Schaan

Head of the Technical Assessment Body


Official Journal of the European Communities L 254 of 08.10.1996


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing Bar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Minimum value of related rib area $f_{R,min}$ according to EN 1992-1-12004+AC:2010 Rib height of the bar shall be in the range 0,05 * d \leq h_{rib} \leq 0,07 * d (d = Nominal diameter of the rebar; h: Rib height of the rebar)

G&B Fissagi Gebofix EPO PLUS RE for concrete

Product description

Threaded rod and reinforcing bar

Annex A 3

Table A1: Materials

Part	Designation	Material				
Steel,	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel,					
Hot-di	Hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009					
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001				
'	Alichor fou	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009				
		Steel acc. to EN 10087:1998 or EN 10263:2001				
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for 4.6 rod) EN ISO 898-2-2012,				
	Tiexagori flut, EN 130 4032.2012	Property class 5 (for 5.8 rod) EN ISO 898-2-2012,				
		Property class 8 (for 8.8 rod) EN ISO 898-2-2012,				
3	Washer, EN ISO 887:2006, EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised				
Stainle	ess steel					
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506				
2	Hexagon nut, EN ISO 4032:2012	According to the threaded rod				
	Washer, EN ISO 887:2006,					
3	EN ISO 7089:2000, EN ISO 7093:2000	According to the threaded rod				
	or EN ISO 7094:2000					
High o	corrosion resistance steel					
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1				
2	Hexagon nut, EN ISO 4032:2012	According to the threaded rod				
	Washer, EN ISO 887:2006,					
3	EN ISO 7089:2000, EN ISO 7093:2000	According to the threaded rod				
	or EN ISO 7094:2000					
Reinfo	prcing bars					
	Rebar EN 1992-1-1:2004+AC2010,	Bars and de-coiled rods class B or C				
1	Annex C	f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k^* f_{yk}$				

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Product description Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30 and Rebar Ø8 to Ø32.
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013
- Uncracked concrete: M8 to M30, Rebar Ø8 to Ø32
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32

Temperature range:

- T1: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T3a: -40°C to +60°C (max. short. term temperature +60°C and max. long term temperature +43°C)
- T3b: -40°C to +72°C (max. short. term temperature +72°C and max. long term temperature +43°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 or EOTA Technical Report TR 055 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Intended use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod

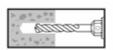
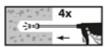
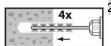

Anchor size		M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d ₀ [mm]	10	12	14	18	22	26	30	35
Effective anchorage donth	h _{ef,min} [mm]	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in fixture	d _f [mm]	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm]	11	14	15	22	24	31	31	38
Torque moment	max T _{inst} [Nm]	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm]	0							
Thickness of lixture	t _{fix,max} [mm]	1500							
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$							
Minimum spacing	s _{min} [mm]	$s_{min} = max(h_{ef}/2; 5d_{nom})$							
Minimum edge distance	c _{min} [mm]	$c_{min} = max(h_{ef}/2; 5d_{nom})$							

Table B2: Installation parameters for rebar

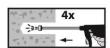

Anchor size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	d ₀ [mm]	12	14	16	20	25	32	40
Effective anchorage depth	h _{ef,min} [mm]	60	60	70	80	90	100	128
Effective anchorage depth	h _{ef,max} [mm]	160	200	240	320	400	500	640
Diameter of steel brush	d _b [mm]	12	14	18	22	27	35	43
Minimum thickness of member	h _{min} [mm]	h _{ef} +	30 mm ≥ 1	00 mm		h _{ef} +	+ 2d₀	
Minimum spacing, hef,min	s _{min} [mm]	40	40	40	40	50	50	70
Minimum spacing, hef,max	s _{min} [mm]	80	100	120	160	200	250	320
Minimum edge distance, hef,min	c _{min} [mm]	40	40	40	40	50	50	70
Minimum edge distance, hef,max	c _{min} [mm]	80	100	120	160	200	250	320

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Intended use Installation parameters	Annex B 2

Installation instructions

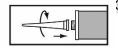


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B2).



Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air a minimum of four times. If the bore hole ground is not reached an extension shall be used.



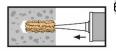
2b. Check brush diameter (Table B1) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > db,min (Table B1) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B1).

2c. Finally blow the hole clean again with compressed air a minimum of four times. If the bore hole ground is not reached an extension shall be used.

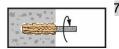
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again

Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For foil tube cartridges, cut off the foil tube clip before use. For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods

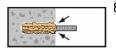

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

G&B Fissagi Gebofix EPO PLUS RE for concrete


Intended use Installation instructions

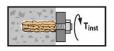
Annex B 3

Installation instructions (continuation)



Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B3.

Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor should be free of dirt, grease, oil or other foreign material.

Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B3: Minimum curing time

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +14°C	45 min	30 h	60 h
+15°C to +19°C	25 min	18 h	36 h
+20°C to +29°C	12 min	10 h	20 h
+30°C to +39°C	6 min	6 h	12 h
+40°C	5 min	4 h	8 h

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Intended use	Annex B 4
Installation instructions (continuation)	
Curing time	

Table B4: Parameter cleaning and setting tools

Anchor	Size (mm)	Nominal drill bit diameter d₀ (mm)	Steel Brush d _b (mm)	Piston plug
	M8	10	11	
	M10	12	14	Not necessary
	M12	14	15	Not necessary
Threaded Rod	M16	18	22	
	M20	22	24	#24
	M24	26	31	#28
	M27	30	31	#32
	M30	35	38	#35
	Ø8	12	12	
	Ø10	14	14	Not no occorry
Dobor	Ø12	16	18	Not necessary
Rebar	Ø16	20	22	
THE PERSON NAMED IN THE PE	Ø20	25	27	#24
	Ø25	32	35	#32
	Ø32	40	43	#38

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Intended use Cleaning and setting tools	Annex B 5

Table C1: Characteristic values of resistance for threaded rods under tension loads in uncracked concrete (Design according to EN 1992-4)

Anchor size threaded	rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure				l.		l.		l.			l
Characteristic tension resistance N _{Rk,s} [kN]			A _s x f _{uk}								
Combined pull-out an	d concrete cone	failure									
Characteristic bond res	istance in uncrack	ed concrete	C20/25								
Temperature range	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	15	15	15	12	12	12	11	9.5
T1:40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	10	9.5	8.5	7.5	7
Temperature range	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	9.5	9.5	9	8.5	8	7.5	7.5	7.5
T3a:60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	9.5	9.5	9	8.5	7.5	7	6.5	6
Temperature range	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8	7.5	7	7	6.5	6.5
T3b:72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	8.5	8.5	8	7.5	7	6	5.5	5.5
Increasing factors for concrete C30/37							04				
Ψ_c		C40/50 C50/60		1.07 1.09							
Concrete cone failure		1									
Factor for concrete con	e failure	k ₁ ¹⁾).1			
for uncracked concrete		k _{ucr,N} ²⁾		11							
Edge distance		C _{cr,N}	[mm]	1.5h _{ef}							
Splitting failure				1							
		h / h _{ef} ≥ 2	,0	1,0	h _{ef}	h/h _{ef}	1				
Edge distance		2,0 > h / l	n _{ef} > 1,3	4,6 h _{ef} – 1,8 h		1,3					
		h / h _{ef} ≤ 1	.3	2,26 h _{ef}				1,0 h _e	, 2,	26·h _{ef}	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety facto concrete)		$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$					1	.0			
Installation safety facto hole) 1) Design according B		$\gamma_2^{1)} = \gamma_{inst}^{2)}$					1	.0			

¹⁾ Design according EOTA Technical Report TR 055 ²⁾ Design according EN 1992-4:2016

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Performances	Annex C 1
Characteristic resistance for tension loads - threaded rod	
Design according to EN 1992-4	

Table C2: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to EN 1992-4)

Anchor size threaded	e threaded rod				M16	M20	M24	M27	M30			
Steel failure									•			
Characteristic tension resistance N _{Rk,s} [kN]					A _s x f _{uk}							
Combined pull-out an	d concrete cone	failure										
Characteristic bond res	istance in cracked	concrete C	20/25									
Temperature range	dry and wet concrete	T _{Rk,cr}	[N/mm ²]	7.5	6.5	6	5.5	5.5	5.5			
T1: 40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	7.5	6	5	4.5	4	4			
Temperature range	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4.5	4	3.5	3.5	3.5	3.5			
T3a: 60°C/43°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	4.5	4	3.5	3.5	3.5	3.5			
Temperature range	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4	3.5	3	3	3	3			
T3b: 72°C/43°C	flooded bore hole	₹ _{Rk,cr}	[N/mm ²]	4	3.5	3	3	3	3			
Increasing factor for cor		C30/37					.04					
(only static or quasi-static actions) C40/50			1.07									
Ψ _c		C50/60				1	.09					
Concrete cone failure Factor for concrete con		k ₁ ¹⁾		T		7	. 0					
for cracked concrete	e fallure	k _{cr,N} ²⁾					.2					
Edge distance		C _{cr,N}	[mm]	7.7 1.5h _{ef}								
Splitting failure		Ccr,N	[111111]			1.0	Ji let					
		h / h _{ef} ≥ :	2,0	1,0 h _{ef}		h _{ef} ,						
Edge distance		2,0 > h /	h _{ef} > 1,3	4,6 h _{ef} – 1,8 h		,3						
		h / h _{ef} ≤	1.3	2,26 h _e	ef	-	1,0·h _{ef}	2,26·h _e	C _{cr,sp}			
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp					
Installation safety facto concrete)	r (dry and wet	$\gamma_2^{(1)} = \gamma_{inst}^2$)				.0					
Installation safety facto hole)	r (flooded bore	$\gamma_2^{1)} = \gamma_{inst}^2$)			1	.0					

¹⁾ Design according EOTA Technical Report TR 055 2) Design according EN 1992-4:2016

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Performances	Annex C 2
Characteristic resistance for tension loads – threaded rod	
Design according to EN 1992-4	

Table C3: Characteristic values of resistance for threaded rods under shear loads in cracked and uncracked concrete (Design according to EN 1992-4)

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance V _{Rk,s} [kN]						0.5 x	A _s x f _{uk}			
Characteristic resistance of group of fa	steners									
Ductility factor			$k_7 = 1,0$	for steel w	ith rupture	elongatio	n A₅ > 8%			
Steel failure with lever arm										
Characteristic bending moment	M^0_{Rk}	[Nm]				1.2 x V	V _{el} x f _{uk}			
Concrete pry-out failure										
Factor for resistance to pry-out failure			2.0							
Installation safety factor	$\gamma_2^{1)} = \gamma_{inst}^{2)}$		1.0							
Concrete edge failure										
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27 30					30		
Effective length of fastener	ℓ _f	[mm]	min (h _{ef} , 8 d _{nom})							
Installation safety factor	$\gamma_2^{1)} = \gamma_{inst}^{2)}$					1	.0			

¹⁾ Design according EOTA Technical Report TR 055 ²⁾ Design according EN 1992-4:2016

G&B Fissagi Gebofix EPO PLUS RE for concrete
Performances
Characteristic values of resistance for threaded rods under shear loads in cracked and uncracked concrete, Design according to EN 1992-4

Annex C 3

Table C4: Characteristic values of resistance for rebar under tension loads in uncracked concrete (Design according to EN 1992-4)

Anchor size threaded	readed rod				Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Steel failure				1		1		l.	1			
Characteristic tension resistance N _{Rk,s} [kN]			A _s x f _{uk}									
Combined pull-out an	d concrete cone	failure										
Characteristic bond res	sistance in uncrack	ed concrete	C20/25									
Temperature range	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	13	13	13	12	12	11	8		
T1: 40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	13	13	11	9.5	8.5	7.5	6		
Temperature range	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8	7.5	7	7	6.5		
T3a: 60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8	7.5	7	6	5		
Temperature range	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	7.5	7.5	7.5	7	6.5	6	6		
T3b: 72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7.5	7.5	7.5	7	6	5.5	4.5		
Increasing factors for concrete C30/37			1.04									
III C		C40/50		1.07								
Concrete cone failure		C50/60					1.09					
Factor for concrete con		k ₁ ¹⁾		1			10.1					
for uncracked concrete		k _{ucr,N} ²⁾		10.1								
Edge distance		C _{cr,N}	[mm]	1.5h _{ef}								
Splitting failure		C _{Cr,N}	[iiiiii				1.Onet					
		h / h _{ef} ≥ 2	,0	1,0	h _{ef}	h/h _{ef}						
Edge distance		2,0 > h / l	∩ _{ef} > 1,3	4,6 h _{ef} – 1,8 h		1,3						
		h / h _{ef} ≤ 1	.3	2,26	h _{ef}		1,	0·h _{ef}	2,26·h _{ef}	C _{cr,}		
Axial distance		S _{cr,sp}	[mm]				2 c _{cr,sp}					
Installation safety facto concrete)	r (dry and wet	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$		1.0								
Installation safety facto hole)	r (flooded bore	$\gamma_2^{1)} = \gamma_{inst}^{2)}$					1.2					

¹⁾ Design according EOTA Technical Report TR 055 2) Design according EN 1992-4:2016

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Performances	Annex C 4
Characteristic values of resistance for rebar under tension loads in uncracked concrete, Design according to EN 1992-4	

Table C5: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to EN 1992-4)

Anchor size threaded	rod			Ø12	Ø16	Ø20	Ø25	ø32		
Steel failure										
Characteristic tension resistance N _{Rk,s} [kN]			A _s x f _{uk}							
Combined pull-out and concrete cone failure										
Characteristic bond resistance in uncracked concrete C20/25										
Temperature range	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	7.5	6.5	6	5.5	5.5		
T1: 40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	7.5	6	5	4.5	4		
Temperature range	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4.5	4	3.5	3.5	3.5		
T3a: 60°C/43°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	4.5	4	3.5	3.5	3		
Temperature range	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4	3.5	3	3	3		
T3b: 72°C/43°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4	3.5	3	3	3		
Increasing factors for concrete C30/37			1.04							
Ψ _c C40/50 C50/60				1.07 1.09						
Concrete cone failure		C50/60				1.09				
Factor for concrete cone	failure	k ₁ ¹⁾				7.2				
for cracked concrete		k _{cr,N} ²⁾				7.7				
Edge distance		C _{cr,N}	[mm]			1.5h _{ef}				
Splitting failure										
		h / h _{ef} ≥ 2	,0	1,0 h _{ef}	h/h _{ef}					
Edge distance		2,0 > h / h	n _{ef} > 1,3	4,6 h _{ef} – 1,8 h	1,3					
		h / h _{ef} ≤ 1	.3	2,26 h _{ef}		1,0 ·	n _{ef} 2,26·1	C _{cr,sp}		
Axial distance	ce s _{cr.sp} [mm]		[mm]			2 c _{cr,sp}				
Installation safety factor concrete)	(dry and wet	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$				1.0				
Installation safety factor hole)	(flooded bore	$\gamma_2^{1)} = \gamma_{\text{inst}}^{2)}$				1.2				

¹⁾ Design according EOTA Technical Report TR 055 2) Design according EN 1992-4:2016

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Performances	Annex C 5
Characteristic values of resistance for rebar under tension loads in cracked concrete, Design according to EN 1992-4	

Table C6: Characteristic values of resistance for rebar under shear loads in cracked and uncracked concrete (Design according to EN 1992-4)

Anchor size threaded rod			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Steel failure without lever arm												
Characteristic shear resistance V _{Rk,s} [kN]					().5 x A _s x f _t	ık					
Characteristic resistance of group of f	asteners	•	•									
Ductility factor	$k_7 = 1.0 f$	or steel with	n rupture ek	ongation A ₅	> 8%							
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk}	[N.m]	1.2 x W _{el} x f _{uk}									
Concrete pry-out failure		l	1									
Factor for resistance to pry-out failure	k ₈		2.0									
Installation safety factor	nstallation safety factor $\gamma_2^{1)} = \gamma_{inst}^{2)}$					1.0						
Concrete edge failure	•											
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 25 32									
Effective length of fastener ℓ_f [mm]				min (h _{ef} , 8 d _{nom})								
Installation safety factor	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$		1.0						•			

¹⁾ Design according EOTA Technical Report TR 055
2) Design according EN 1992-4:2016

G&B Fissagi Gebofix EPO PLUS RE for concrete
101 Concrete
Performances
Characteristic values of resistance for rebar under shear loads in cracked
and uncracked concrete, Design according to EN 1992-4

Annex C 6

Table C7: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tension loa	Tension load								
Uncracked	concrete								
F	[kN]	11.9	14.3	19.0	23.8	35.7	35.7	45.2	45.2
δ_{N0}	[mm]	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5
δ _N ∞	[mm]	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Cracked co	Cracked concrete								
F	[kN]			14.3	16.7	23.8	28.6	28.6	28.6
δ_{N0}	[mm]			0.4	0.5	0.5	0.6	0.6	0.7
δ _N ∞	[mm]			2.0	2.0	2.0	2.0	2.0	2.0
Shear load									
F	[kN]	3.5	5.5	8.0	15.0	23.3	33.6	43.7	53.4
δ_{N0}	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
δ _N ∞	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7

Table C8: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	ø32	
Tension loa	Tension load								
Uncracked	Uncracked concrete								
F	[kN]	7.6	11.9	16.7	28.6	35.7	45.2	66.7	
δ_{N0}	[mm]	0.3	0.3	0.4	0.4	0.4	0.5	0.5	
δ _N ∞	[mm]	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
Cracked concrete									
F	[kN]			11.9	19.0	23.8	28.6	35.7	
δ_{N0}	[mm]			0.4	0.5	0.5	0.6	0.6	
δ _N ∞	[mm]			2.0	2.0	2.0	2.0	2.0	
Shear load									
F	[kN]	6.6	10.3	14.8	26.3	41.1	64.3	105.3	
δ_{N0}	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
δ _N ∞	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7	

G&B Fissagi Gebofix EPO PLUS RE
for concrete

Performances
Displacement for threaded rods and rebar

Annex C 7

Table C9: Seismic performance category	ory C2
--	--------

Anchor size threaded	M12	M16	M20				
Tension load							
Steel failure							
Characteristic tension re Steel, property class 4.6	N _{Rk,s,eq,C2}	[kN]	34	63	98		
Characteristic tension re Steel, property class 5.8		N _{Rk,s,eq,C2}	[kN]	42	78	122	
Characteristic tension re Steel, property class 8.8	esistance,	N _{Rk,s,eq,C2}	[kN]	67	125	196	
Characteristic tension re Stainless steel A4 and F	esistance,	$N_{Rk,s,eq,C2}$	[kN]	59	110	171	
Characteristic resistar	ice to pull-out						
Temperature range	dry and wet concrete	$ au_{Rk,p,eq,C2}$	[N/mm ²]	3.5	3.2	3.0	
T1:40°C/24°C	flooded bore hole	τ _{Rk,p,eq,C2}	[N/mm ²]	3.5	3.2	3.0	
Temperature range	dry and wet concrete	τ _{Rk,p,eq,C2}	[N/mm ²]	3.0	2.7	2.5	
T3a:60°C/43°C	flooded bore hole	$ au_{Rk,p,eq,C2}$	[N/mm ²]	3.0	2.7	2.5	
Temperature range	dry and wet concrete	τ _{Rk,p,eq,C2}	[N/mm ²]	2.8	2.5	2.3	
T3b:72°C/43°C	flooded bore hole	τ _{Rk,p,eq,C2}	[N/mm ²]	2.8	2.5	2.3	
Installation safety factor	(dry and wet concrete)	γ ₂ =γ _{inst}		1.0			
Installation safety factor	γ ₂ =γ _{inst}		1.0				
Shear load							
Steel failure without le							
Characteristic shear res Steel, property class 4.6	$V_{Rk,s,eq,C2}$	[kN]	13	18	28		
Characteristic shear res Steel, property class 5.8	$V_{Rk,s,eq,C2}$	[kN]	16	22	35		
Characteristic shear res Steel, property class 8.8	$V_{Rk,s,eq,C2}$	[kN]	25	36	56		
Characteristic shear res Stainless steel A4 and F	$V_{Rk,s,eq,C2}$	[kN]	22	31	49		
	ad resistance V _{Rk,s,eq} in the for hot-dip galvan				lowing reduc	tion factor	
Reduction factor for hot-di		α _{v,h-dq,c2}	Jiciai Stariua	0.46	0.61	0.61	
Factor for annular gap	α _{v,n-ag,c2}		0.40	0.5	0.01		

Table C10: Displacement of threaded rod under tension and shear load – seismic performance category C2

Anchor size th	readed rod	M12	M16	M20	
$\delta_{N,eq(DLS)}$	[mm]	0.20	0.40	0.77	
$\delta_{N,eq(ULS)}$	[mm]	0.76	0.74	1.68	
$\delta_{V,eq(DLS)}$	[mm]	5.29	4.12	4.94	
δv eq(III S)	[mm]	10.20	90.5	10.99	

The anchor shall be used with minimum rupture elongation after fracture A₅ equal to 19%.

G&B Fissagi Gebofix EPO PLUS RE for concrete	
Performances Seismic performance category C2	Annex C 8